Physiological control of entry timing and fate DFO-05239 ## Genes expressed in FW (W) associated with Fate Original two-class t-tests Revealed 1,744 genes at p<0.001 1,744 W 2006 gene list applied To ALL LOCATIONS sampled In 2006: 2 groups Savona 2006 77 genes overlap with SW "fate" list -- same direction of fold change Same relationships among indiv. depicted with either gene list – same underlying mechanism related to fate LA Spawning 2006 ## 1,744 W 2006 gene list applied to 2005 To W 2005 summer-run fish: Again, 2 groups of fish To ALL LOCATIONS sampled in 2005: Again, 2 groups of fish To EACH stock sampled in 2005 at W: Again, 2 groups of fish Healthy www. Stuar Healthy UH Quesne Healthy Chilko Migrating "unhealthy" fish were also present in the SW and FW environments in 2005 and 2007 (data not shown), but proportions varied significantly by year # Spatial patterns associated with condition and fate # What are Healthy and Unhealthy profiles associated with? | Fate | | | | |-------------------------|---------------|---------|------------| | URM-Surv | p-value | Ν | Odds Ratio | | Ocean Health | | | | | H vs. UH (no intermed) | | | | | `JS | 0.0081 | 24 | 16 | | JS/JDFS | 0.0078 | 28 | 11 | | Freshwater Health | | | | | Chilko, Scotch Creek, L | ower Adams St | ocks Co | ombined | | UH vs. H-I | 0.0233 | 52 | 2.6 | | mostUH vs. H | 0.0135 | 32 | 3 | | mostUH vs. H-I | 0.0035 | 46 | 6 | 0.00227 52 Scotch Creek: NO UH fish made it to spawning grounds Chilko: NO mostUH fish made it to spawning grounds LA: Two mostUH fish made it to spawning grounds Both present in late Oct/Nov during high pre-spawn mort **Entry Timing** **Early vs Normal** mostUH vs all others UH vs. H (no Intermed) 0.007 31 5.25 Unhealthy fish in SW 16x less likely than healthy fish to make past HWT region to reach spawning grounds The "most" unhealthy fish 7.3x less likely than healthy fish to make past HWT region to reach spawning grounds Weaker effect on only moderately UH fish Unhealthy fish 5.25x more likely than healthy fish to enter the river early \\svbcvanfp01\Cohen-Comm\Personal Drives\Science\K risti Miller\Electronic Documents - Search 001\PUB \\Genome BC Project--2008\SEF_Bug Hunt\BugHunt_Key Slides.ppt 7.3 ## GO Processes in SW associated with Fate In River | Rank | Biological/Molecular Process | Profile | Explanation | |------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------| | | Blood Processes | | | | 1 | von Willebrand factor containing domain/EGF-like region | Down in URM | involved in cell adhesion/coagulation | | 2 | oxygen transport/globin/metalloprotein | Up in URM | Hemaglobin is up, but iron binding down | | 7 | Iron binding | Down in URM | Hemaglobin is up, but iron binding down | | | Metabolism O' noifer to see | | | | 3 | fatty acid metabolism | Down in URM | | | 4 | von Willebrand factor containing domain/EGF-like region oxygen transport/globin/metalloprotein Iron binding Metabolism fatty acid metabolism creatine kinase activity aerobic respiration | Down URM | Metabolic processes down-regulated | | 8 | aerobic respiration | Down in URM | | | | Disease/stress/toxicant response | | | | | | 24 down, 15 up in | | | 5 | response to abiotic stimulus (includes many immune/stress signals) | URM | | | 6 | bZip transcription factor | Down in URM | often in response to pathogen exposure | #### **ALSO** Proliferative, anti-apoptotic profile in Unhealthy Fish Osmotic genes: Na-K ATPase alpha 1c (up UH) 6 ## GO Processes in FW associated with Fate In River **Unhealthy** Signature" Induction of defence response Intracellular Pathogen Response complement cascade Stress Response Post-translational modification Ubiquitin-dep. Proteolysis Cell to cell signalling Neurological systems processes TCA cycle Inflammatory response/apoptosis (SW-FW) Miller-DFO *Osmoregulation—FW shift "Healthy Signature" Protein Biosynthesis Jinises evade nost. Oxidative Phosphorylation "Unhealthy" Signature is a "disease" signature aid reducation # "Unhealthy" Signature e a Virally-induced signatur \\svbcvanfp01\Cohen-Comm\Personal Drives\Science\K risti Miller\Electronic Documents - Search 001\PUB \Genome BC Project--2008\SEF_Bug Hunt\BugHunt_Key Slides.ppt 8 ## Molecular Pathogen Screening #### SCREENED AND NEGATIVE #### NOT YET SCREENED Retroviruses RNA Viruses ISAV DNA Viruses Herpes Viruses PSPV IHNV SPDV Aquareovirus VHSV IPNV Picornavirus Retroviruses Lentivirus deg primers Parasites Myxobolus cerebralis pos endogenous Microsporidium Nucleospora Bacterial Pathogens Connect 166 primary DCCF General 165 primers-DGGE Many other degen. Primers to try Salmon Leukemia Virus? **Parasites** Cilliates—20/96 in river, most PSM Myxosporidia LOMA—9/96 samples pos Some microsporidia Miller-DFO 9 ## Known Exogenous Retroviruses in Fish #### Confirmed Retroviruses Zebrafish -full length expressed endogenous retrovirus sequenced (ZFERV)—suggested that it may produce intact virus particles Snakehead Fish Retrovirus—completely sequenced similar to bovine leukemia and human T-cell leukemia virus group enhances cytopathic effects of other viruses (e.g. nodavirus) Walleye dermal sarcoma virus (WDSV)—type I and II completely sequenced, neoplasms seasonal (temperature related?) phylogenetically closest to murine leukemia virus Walleye epidermal hyperplasia virus (WEHV)—completely sequenced, neoplasms seasonal Atlantic Salmon Swim Bladder Sarcoma Virus (SSSV)—completely sequenced only sequenced salmon retrovirus, first observed in 1975 on Scottish salmon farms with neoplastic disease, farms in Maine in 1996 Endogenous sequence annotating to SSSV observed and up-regulated in UH fish #### Suspected retroviruses (infectious neoplasms--oncogenic) Lyphnosarcoma of pike Plasma cell leukemia of brown bullhead Neurofibromatosis of damsel fish Salmon Leukemia Virus Miller-DFO 10 ## Plasmacytoid Leukemia—Marine Salmon Anemia—Salmon Leukemia Virus First diagnosed a leukemia-like disease in farmed chinook salmon in BC in 1988 associated with marine mortalities (rates 2.5-20% in marine environment, not tested in FW) Also identified in wild salmon in the SOG Transmission studies using homogenates show susceptibility of chinook, sockeye and Atlantics in farms, peak diagnoses in Sept, coincide with highest proportion of associated deaths failure to adapt to seawater noted soon after smolts moved to SW Inflammatory disease—shifts in specific and non-specific inflammation higher incidence in 1992 than 1993 (coincides with sockeye 2000, 2004, 2008) Diagnosed by grossly pale gills, massive numbers of plasmablasts (large immature cells) in posterior Kidney, immature blood cells in stained liver smears and renal interstitial hyperplasia of proliferating plasmoblasts, proliferation and infiltration of plasmablasts into the visceral organs and retrobulbar tissue of the eyes, difficult to diagnose histologically (specificity 100%, sensitivity 32%) Eaton et al. (1993) suggested that it was caused by a **retrovirus**, named **salmon leukaemia virus** or SLV Evidence: can infect fish from .2 micron filtered serum, presence of Mn²⁺-dependent poly(rA)-directed Reverse Transcriptase, electrophoretic pattern of polypeptides from purified virions, RNA band at density of 1.16 to 1.18g/ml in sucrose, cytolytic cell line developed The virus could not be "cultured" and no sequence was obtained Potential role of TEMPERATURE of SLV—associated with high water temperatures—induced cytolytic infection at 15-20°C However: SLV infection histologically indistinguishable from an intranuclear microsporidian infection caused by Nucleosporia salmonis (previously Enterocytozoan salmonis), and the presumed virus is often found in association with this parasite, however the parasite alone infections (in California RT) can be cleared by Fumagillin DCH, but not the BC chinook infections Microsporidia are intracellular unicellular (very small) parasites Nucleosporia infectes the nuclei of lymphopoietic-like cells, inducing proliferation Found globally and assumed that all salmonid species are potential hosts Has caused extensive mortality in FW and SW—considered threat to cultured and wild salmon threatening the supplementation programs for endangered salmon in France May also fit well with the transcriptional profile observed ## Why focus on Plasmacytoid Leukemia? •Transcriptional data indicate the salmon may be responding to a retrovirus, and specifically a leukemia-type retrovirus SLV is the only suspected retrovirus in BC Salmon, but has yet to be isolated or sequenced - •Screened for other common viruses, including ISAV, IHNV, VHSV, Herpes, IPNV, Picornavirus all negative. Also screened for bacterial pathogens and myxosporidian parasites, and Loma, all negative. - •Fish with plamacytoid leukemia are **anemic**, with diseased Chinook salmon have **pale gills**pale gills often observed in dying sockeye salmon in the FR Anemia generally involves iron deficiency—very low transcription of ferritin in our "unhealthy" fish indicates low iron - Our fish generally "look" healthy this disease does not have easily distinguishable features and is difficult to diagnose even with histology unless you know what you are looking for, and then, histology is only 32% sensitive (i.e. miss 68% of positives) - Temperature sensitivity of SLV established Our data indicate that temperature and potentially stress are a factor in poor survivorship of "unhealthy" profile fish - ·Salinity sensitivity of SLV hypothesized - ·Highest mortality of SLV infected chinook upon transfer from FW to SW - •Transcriptional data indicate osmoregulatory shifts in unhealthy fish towards FW state - •Retroviruses, including those that cause leukemia, well known for inducing **immunosuppression**—observed in marine sampled fish - Organisms with leukemia often succumb to secondary bacterial infections—expected in river Chinook infected with Plasmacytoid leukemia also carry higher incidence of other infections, especially BKD - ·Leukemia is associated with coagulation disorders—poserved in 2003 sockeye salmon - •Retroviruses are neoplastic viruses, and hence associated with cancer, Numerous cancer biomarkers up-regulated in the brain of unhealthy fish 12 ## Approach #### A. USE MOLECULAR APPROACHES TO IDENTIFY THE DISEASE AGENT #### I. Apply molecular markers to identify well characterized pathogens Already screened for viruses: ISAV, IHNV, VHSV, Herpes, IPNV, Picornavirus all bacterial pathogens (e.g. vibrios, flavobacterium, aeromonas, Yersinia, ...), and some myxo and microsporidian viruses (e.g. Loma) Still to screen: Pacific Salmon Paramyxovirus (proliferative gill disease; PSPV), aquariovirus, reovirus, *Oncorhynchus masou* virus (OMV), Myxobolus cerebralis, microsporidian *Nucleospora salmonis* (often found associated with SLV in BC) #### II. Develop and apply generalized primers to additional viral families #### A. Primers available for: Retroviruses: to look for SLV (suspected) or other retroviruses Paramyxoviruses More...Kyle ## B. Viral families for which generalized screening needs to be developed Kyle... Utilization of degenerate primers for generalized viral screening may require that the virus be concentrated #### III. Apply viral microarray There are DNA arrays developed that contain conserved sequences from all known viral families that can be used to identify an unknown virus to family level— e.g. SARS was identified and sequenced in one week using this approach We have contacted the lab that performed this SARS analysis and they are willing to collaborate. This technology could be applied in our labs to identify unknown disease agents in future #### VI. Develop specific PCR primers to the pathogen, if not already done These can be used in screening for the disease in other life stages, drainages and species ## Approach #### B. USE HISTOLOGY TO IDENTIFY THE DISEASE AGENT Over 300 histology samples were taken from sockeye salmon returning to the Fraser River in 2008. Many Of these samples were taken from moribund salmon. While associations with genomically characterized "Unhealthy" status are not yet established, histological examination specifically geared toward detecting plamacytoid leukemia will be conducted. A full set of tissue samples for RNA analysis are also available From these same fish, and we will conduct genomic characterization of any fish positive for plamacytoid leukemia to determine if associations with previous "unhealthy" profiles exist #### C. ISOLATE THE DISEASE AGENT AND ESTABLISH A CHALLENGE MODEL #### I. Concentrate and Isolate the virus from various tissues Previous microarray studies have characterized individual sockeye salmon as "unhealthy", and we would concentrate initially on kidney, brain, gill and liver tissues from these individuals - II. Establish an infected cell line - III. Begin development of in vitro and/or in vivo challenge model ## D. ESTABLISH THE RANGE OF SALMONID SPECIES, STOCKS, AND LIFE STAGES POTENTIALLY AFFECTED BY THE PATHOGEN We have amassed tissue samples from both outmigrating smolts (>2000 fish) and return migrating adults (>1000 fish) that include multiple stocks (determined already through stock ID) of sockeye, chinook and coho salmon from BC and Washington State. We will screen a subset of these using the primers developed for the pathogen, once determined. Miller-DFO 14 ## Brain: migratory route--outside or inside? ## 2003 migration **JDFS** ## 2005 migration 2 distinct profiles correlate with ocean route taken to reach river >1000 km from the river--spawning Coastal versus offshore routes? 15 ## **Brain Diversion** ## What if we import the 1,744 W Fate list to other tissues? #### 2003 BRAIN #### 2005 BRAIN # Two highly distinct profiles of fish in both years >1,000 genes overlap with "diversion" gene list 100% correspondence between fate and diversion-related physiological relationships (previous "A" profile = unhealthy) Miller-DFO 16 #### 2003 BRAIN #### 2005 BRAIN Signal even greater when two physiologies directly compared 4608 genes sig at Holms 0.001 3468 at 10⁻¹⁰ Unlike gill, fish with "unhealthy" brain profile are not changing transcriptionally as much as those with "healthy" Profile—635 genes QCI-spawning vs. 1401 at P<0.001 Most sig change of Healthy W-Spawning—maturation Unhealthy Whonnock Fish in 2003 were the bleeders! 17 ## High degree of overlap between years ## Inside vs outside migration routes: Different navigational strategies # Reproductive Maturation Unhealthy assoc with mature profile Perhaps disruption in the transcriptional sequence associated with maturation is causing unhealthy fish to "think" they are mature? 20 # Unique metabolic processes associated with stimulation of different regions of the brain ## The Unhealthy Brains—response to retrovirus? Leukemia virus? ## 40 Genes co-opted by Leukemia viruses 20 Genes within co-opted pathways ## >40 Genes involved in other retroviral infections ## The Unhealthy Fish -- Links to Brain Cancer? #### 30 Genes linked with cancer, 3 BRAIN cancer -4 -5 -3 -2 -1 0 2 3 4 5 23 ## SLV Isolated from eye tumours Is the shift from memory to sensory homing mechanisms due to an ocular brain tumour? Do these transcriptional shifts really result in differences in the way salmon navigate? Does the virus kill memory cells, as in many viral infections of the brain resulting in reduced memory related transcription? Are these profiles related to behavioural shifts? 24 ### Are the brain and gill profiles correlated within the same fish? ONLY have data from 2005 where both tissues run (non-destructive sampling) Only 14% (5) of gills were UH, 25% (13) of brains Only 1 of the 5 individuals with unhealthy had unhealthy brain profile Unhealthy brain profile almost exclusively observed in JS (1 W, 2 JDFS) Did fish with unhealthy profile brains not make to the river? If this is Marine Salmon Anemia, is the brain profile linked with the virus and the gill the microsporidian parasite? if so, the virus may have been resident in the salmon for months or years (could be vertically transmitted), with exposure to the microsporidian upon arrival to the coast Fits with "unchanging" brain profile and rapidly progressing gill response As the two infections are histologically inseparable, perhaps the salmon respond transcriptionally in a very similar way Screening with molecular markers for each would answer this question Miller-DFO 25 IF Brain profiles were linked with shifts in entry timing, four potential Ho on why fish enter the river early ## 1) Osmotic preparation Unhealthy Fish enter FW faster because they can no longer tolerate SW 2) Maturation Unhealthy Fish THINK that they are mature (increased transcription of estradiol, vitellogenin, Secretogranin-II - high even in QCI) - 3) Senescent, Sick and Stressed Enhanced senescence signals in unhealthy fish Could be compounded by osmotic sensitivity - 4) Shift in navigational system—memory to sensory causes enhanced sensitivity to FW Cues Note: unhealthy fish migrate at the same speed as healthy fish in FW - If the virus is temperature sensitive, infected fish may move coastal as a result. Perhaps FW cues start the "senescence clock"? ## Do Unhealthy Fish enter FW faster because they can no longer tolerate SW? # While SLV or "marine salmon anemia" may not kill fish outright, it may reduce their fitness by causing: - Increased sensitivity to high temperature - ·Poor blood coagulation—observed in 2003 in fish with UH liver/brain profiles - •Could reduce survivorship from catch release fisheries, increase susceptibility to fungal infection - •Known to be associated with myeloblastic leukemia both in early stages and with solid tumours - Disruption on osmoregulatory capacity in SW - Decreased survival in SW for smolts and adults - ·Highest mortalities with salmon anemia on farms when they first move smolts to SW - ·Potential for Vertical Transmission—effects on Smolts - ·Vertical transmission common route of infection for retroviruses, gained either through exogenous means or through integration into the genome - ·Could be used as a means of control in hatcheries—testing broodstock first - Potential for Horizontal Transmission—especially in high densities - ·Hatchery effects (for other Pacific salmon species) - Increase susceptibility to other pathogens - ·Well supported literature on this, but not our data directly, yet... - Tumour development could impact behaviour - increase in coastal migrations, earlier river entry? - ·Increased straying due to loss of memory cells - •Disruption in circadian rhythm—wake/sleep cycle—tired fish? - ·MULTIPLE SALMON SPECIES MAY BE AFFECTED! ## Where to go from here: Upcoming "fate" study - ·Is there enhanced Pre-spawning mortality of Unhealthy Fish? - ·Kim's fish: 2006 Egg retention and longevity in females study at Weaver (gill) - David's PSM and spawning samples in 2006, 2007, 2008? Multiple stocks-g/b - •Temperature response of Unhealthy fish (not treated with fungicide) - ·More fish from Savona? Or other High water temperature regions of the river - Prevalence of Unhealthy profiles in additional years—2007 and 2008 - ·60 fish from 2007 radio-tagging could be used to link with fate in another year, but few morts and small numbers from range of stocks - Cooke's 2008 tagging study? - very high en route and PSM in 2008--Stuart, Nadina, Chilliwack from W, Weaver/Harrison from Ken's (David collected), multiple spawning grounds samples - ·Association with Marine losses in 2006—run fish that did not make it to river - ·Association between gill and brain profiles - ·Correlation non-existent for 2005 in part because brain signal exclusive of JS - ·Have brain and gill for adults collected in river in 2007 and 2008, and JDFS in 2008, but no JS. - ·Smolts - ·Other drainages? No samples that I know of—perhaps in marine mixed stocks? - ·Other species—2007 David collected 70 Chinook/40 coho, QCI 2008—47 chinook, 30 coho - ·Most of this could also be accomplished with molecular markers